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We have determined the e r r o r s  associated with introduction of the effective dielectr ic  con- 
stant into calculations for complex molecular  sys tems .  Appropriate numerical  resu l t s  were 
obtained for cer tain amides.  

One of the most  problematical  fac tors  in studying t rans fe r  p rocesses  and a number of the equilibrium 
proper t ies  of sys tems  consist ing of sets  of molecules with e lect r ical  multipole moments  or  of mixtures  
of such molecules  with ions (as occurs ,  e.g., in e lec t ro ly tes ) i s  evaluation of the e lec t ros ta t ic  interact ion 
between the charged atoms and fu.nctional groups.  The main difficulty in this respec t  is determinat ion of 
the e r r o r s  resul t ing f rom introduction of a cer tain atomic point-charge distribution (from the standpoint 
of model adequacy and par t i a l -charge  magnitude) and selection of the dielectr ic  constant e. The role of the 
la t ter  factor  is considered in the present  ar t icle .  

It must  f i rs t  be noted that the introduction of some "universal"  value of e for all pa i r s  of interact ing 
atoms or  functional groups means that i t  is  averaged over  different situations, since the value of e for dif- 
ferent  pa i rs  of atoms depends on their shor t - range  environment.  However, the use of an e averaged over  
a macroscopic  sys tem for evaluation of part icle  interact ions at a microscopic  distance,  although done 
(e.g., in the Debye-Hucke l  theory of e lectrolytes) ,  is in no way justified. Nevertheless ,  the e r r o r s  r e -  
sulting f rom this procedure  can be est imated.  If we assume that, with a given value of am ' the p a i r - a d -  
ditive approximation gives the best  resul ts ,  the e r r o r  introduced by the deviation of e f rom e m can be 
charac te r i zed  by the mean square e r r o r  in calculation of the sys tem energy:  
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Fig. 1. Mean square e r r o r  in conformation energy of f r ag -  
ments  1-4 as a function of em at different e. 
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Fig. 2. Statist ical  sums of 
f ragments  1-4 as  a func-  
t ion of e. 
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The r e s t r i c t ion  of the integration region in the phase space is  due 
to the fact that the s te r ica l ly  permit ted  regions are  of grea t  in teres t .  

Actually, however ,  the quantity em is not constant but is  charac -  
t e r ized  by a cer ta in  distr ibution P(e). This distr ibution must obviously 
depend on the distance I between the in te rac t ing  atoms and, at the l imit ,  
where l ~ ~,  becomes  6 ( a - e r a ) ,  where  e m is some "macroscopic"  
value of the d ie lec t r ic  constant. The relat ionship between e m and em 
that provides the smal les t  e r r o r  in calculations of this type can be de-  
scr ibed in the following manner.  

As is well known [1], the d ie lec t r ic  constant of a heterogeneous 
volume (in this case ,  a cylinder of length l) is descr ibed  by the re la t ion-  
ship 

k 
(e-- 1)(2e -}- 1) 1 4~ ~ - - ,  

e = -l ~ ~ m i m i n ~ '  (2) 

where  mi* is the average volumetr ic  dipole moment  produced by the dipole moment mi of a functional group 
of the i - t h  type, n i is  the number of such groups,  mimi* is the average product  mimi* , T is  the t empe ra -  
ture in ~ and k is the Boltzmann constant.  

If the probabil i t ies  that different  functional groups will be found in a cer ta in  in tera tomic  volume are  
equal and independent, the incidences of these groups are  distr ibuted exponentially. The distr ibution for  
the quantity (e - 1 )  (2e + 1) /e  is then found in t e r m s  of the corresponding exponents (with an accuracy  down 
to the constant mult ipl ier)  
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where c i are  coeff icients  that dbpend solely on f ~ i l / ~ ' ~ i * .  

A distr ibution of type (3) is s imi la r  to the well-known 11 -distr ibution and r e v e r t s  to it  w h e n / ~ l / ~ *  
= �9 �9 �9 = ~kl/mk----~--~* =/3. Thus,  the distr ibution for e - 1  acquires  the fo rm 
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x ((8--1)(2e_8 § i))(~1-1 exp (, - -  [~l (8--1)(2e_e + 1))  ds. (4) 

Using the notation z = [(e - 1) (2e + 1)]/e,  we obtain 

8-- 1 = --(3--z) +V(3-z)2 Q- 8z (5) 
4 

Equation (5) can be approximated as follows: 

k 
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138 



The average  value of e - 1  is 

k 

k 
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As l i n c r e a s e s ,  this  quantity tends toward 
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Here  it  is impor tan t  to note that the cor responding  mac roscop i c  value is somewhat  s m a l l e r  than ( e - l )  at  
smal l  l .  

S imi lar ly ,  
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The opt imum value of e m is defined by the equation 

k 
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It should be noted that e m is s m a l l e r  than em; however ,  this d i f ference is  compara t ive ly  smal l ,  since 
smal l  d is tances  ( less  than 2.5/~) a re  excluded by s t e r i c  repuls ion.  

The above cons idera t ions  a re  valid for  complex molecu les  with in tegral  degrees  of f r eedom as well; 
it is speci f ica l ly  poss ib le  to obtain useful quanti tat ive e s t i m a t e s  with the i r  aid. In this case ,  the phase 
space of the s y s t e m  is  the space of in t e rna l - ro ta t ion  angles .  

We will give below some numer ica l  r e su l t s  obtained for  the amides :  

1) CH3--CO~NH--CH2--CO--NH--CH3, 
2) CH~--CO--NH--CHCH~CO~NH--CH3, 
3) CH~--CO--NH--CH~--CO--N--CH~--CH,--CH~--CH~, 

i I 

4) CH~--CO--NH--CHCH~--N--CH,--CH~--CH,--CH,. 
] 

The nonvalence i n t r amolecu l a r  in terac t ions  were  taken into account with the aid of the Bakenheim 
- S l a t e r  potentials;  the calculat ion p rocedure  was descr ibed  previous ly  [2]. 

According to m e a s u r e m e n t s  made by a number  of authors ,  the mac roscop i c  d ie lec t r ic  pe rmeab i l i t y  
of amides  is about 3.5 [3, 4]. F igure  1 shows the function a2(em) for  different  values  of e. The data in this 
f igure indicate that there  is a re la t ive ly  smal l  e r r o r  in calculat ing the conformat ional  energy  of the f r a g -  
ments  in quest ion with a r a t he r  broad  range  of var ia t ion  in e nea r  em.  Actually,  a ssuming  that the quant i -  
t ies  U ( e m ) - U  (e) have a normal  dis tr ibut ion,  it can be a s s e r t e d  that the e r r o r  in a calculat ion made with 
e = 3.5 does not exceed 0.5 k c a l / m o l e  for  a 90% s te r i ca l ly  pe rmi t t ed  region in the phase  space ,  provided 
that em fal ls  into the following ranges:  3.0-6.0 ( f ragment  1), 2.5-6.5 ( f ragment  2), 2 .0-7.0 ( f ragment  3), or  
2.0-12.0 ( f ragment  4). 

Compar i son  of these data with the s ta t i s t ica l  sums  of f r a g m e n t s  1-4 (Fig. 2) shows that the e r r o r  in 
the select ion of a has  the g r ea t e s t  effect  for  f r agmen t s  with high mobil i ty ,  p r i m a r i l y  f r agmen t  1. 

139 



Returning to Eq. (10), it must  be noted that var ia t ion  of e m over  the range 2.5-4.0 [5] should have no 
ma te r i a l  influence on the calculated resu l t s .  Thus,  the difference between em and e m = 4.0 for  an average  
in te ra tomie  dis tance of 5A is  about 1%. The sca t t e r ing  of the distr ibution in Eq. (9) is  cha rac t e r i zed  by a 
cer ta in ty  in terval  of 0.1 for  the range 0-10.0 in this case .  

Use of the m a c r o s c o p i c  value of e in molecu la r  calculat ions thus provides  the sma l l e s t  e r r o r  in 
es t imat ing  e l ec t ros ta t i c  in terac t ions .  
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